The study finds that the theory of statistical physics is also valid in the quantum realm

The physical effect is also valid in the quantum world

Experimental scheme for measuring the number fluctuations and response function of a condensed Bose-Einstein photon coupled to a reservoir within a dye microcavity. A fraction of the cavity emission recorded with a photomultiplier (PMT) yields an average population density ⟨n⟩; The other part is dispersed on a grid, and the filtered condensation evolution is recorded spectrally with a linear camera, giving g(2)(τ) and decoupling of the dye cavity Δ. credit: Physical review letters (2023). DOI: 10.1103/PhysRevLett.130.033602

Physicists at the University of Bonn have demonstrated experimentally that an important theory in statistical physics applies to so-called “Bose-Einstein condensates”. Their results now make it possible to measure some properties of quantum “superparticles” and to infer properties of the system that would otherwise be difficult to observe. The study is now published in Physical review letters.

Suppose that in front of you is a vessel filled with an unknown liquid. Your goal is to find out how many particles are in it (atoms or particles) move back and forth randomly because of Thermal energy. However, you don’t have a microscope with which you can visualize these fluctuations of position known as “Brownian motion”.

It turns out that you don’t need that at all: you can also tie an object to a string and drag it through the liquid. The more force you have to apply, the more viscous the fluid will be. The more viscous it is, the less the particles in the fluid change position in the medium. So the viscosity at a given temperature can be used to predict the extent of the fluctuations.

The physical law that describes this basic relationship is fluctuation and dispersion theory. In simple words, it states: the more force you need to apply to confuse the system from the outside, the less random (that is, statistical) it will fluctuate on its own if you leave it alone.

“We have now confirmed the validity of the theory for the first time for a special group of quantum systems: Bose-Einstein condensates,” explains Dr. Julian Schmidt from the Institute of Applied Physics at the University of Bonn.

Superphotons are made up of thousands of light particles

Bose-Einstein condensates are strange forms of matter that can arise due to a quantum mechanical effect: Under certain conditions, particles, whether they are atoms, molecules, or even photons (particles that make up light), become indistinguishable. Several hundred or thousands of them merge into one “superparticle” – Bose Einstein capacitors (BEC).

In a liquid at a finite temperature, molecules move back and forth at random. The warmer the liquid, the more pronounced these temperature fluctuations are. Bose-Einstein condensates can also fluctuate: the number of condensed particles varies. This variability also increases with temperature.

“If the theory of oscillation and scattering is to be applied to BECs, then the greater the oscillation in the number of particles, the more sensitively they must respond to external perturbation,” says Schmidt. Unfortunately, the number [of] The fluctuations in commonly studied BECs in very cold atomic gases are too small to test this relationship. ”

However, the research group of Professor Dr. Martin Weitz, within which Schmidt is the leader of a small research group, is working with Bose-Einstein condensates made of photons. For this system, the limitation does not apply. “We make the photons in the BECs interact with the dye molecules,” explains the physicist. When photons interact with dye molecules, it frequently happens that the molecule “swallows” a photon. Thus the dye becomes strongly excited. He can later release this arousal energy by “spitting” a Photon.

Low-energy photons are often swallowed up

due to contact dye particlesThe number of photons in our BECs shows large statistical fluctuations, says the physicist. In addition, the researchers can precisely control the strength of this difference: In the experiment, photons are trapped between two mirrors, where they are reflected back and forth in the manner of a game of ping-pong.

The distance between the mirrors can vary. The larger it is, the lower the energy of the photons. Since low-energy photons are less likely to excite the dye molecule (so they are more often swallowed), the number of intense light particles now fluctuates much less.

The Bonn physicists have now investigated how the extent of the oscillation relates to the “response” of the BEC. If the volatility and dissipation theory holds, this sensitivity should decrease fluctuation decreases.

“In fact, we were able to confirm this effect in our experiments,” confirms Schmidt, who is also a member of the interdisciplinary research area (TRA) “Material” at the University of Bonn and the excellence group “ML4Q – Matter and Light for Quantum Computing”.

As with liquids, it is now possible to infer the microscopic properties of a Bose-Einstein condensate from microscopic response parameters that can be measured more easily. “This opens the way for new applications, such as the precise determination of temperature in complex photovoltaic systems,” says Schmidt.

more information:
Fahri Emre Öztürk et al, The fluctuation-dissipation relation of a Bose-Einstein photocondenser, Physical review letters (2023). DOI: 10.1103/PhysRevLett.130.033602

Provided by Rheinische Friedrich-Wilhelms-Universität Bonn

the quote: Statistical Physics Theory Also Valid in the Quantum Realm, Study Finds (2023, January 20) Retrieved January 20, 2023 from

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without written permission. The content is provided for informational purposes only.

Leave a Comment